Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter∗
نویسندگان
چکیده
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a Markov Chain Monte Carlo sampling algorithm. Candidate draws for the unobserved volatilities are obtained in blocks by applying the Kalman filter and simulation smoother to a linearization of a nonlinear statespace representation of the model. Crucially, information from both the spot and option prices affects the draws via the specification of a bivariate measurement equation, with implied Black-Scholes volatilities used to proxy observed option prices in the candidate model. Alternative models nested within the Heston (1993) framework are ranked via posterior odds ratios, as well as via fit, predictive and hedging performance. The method is illustrated using Australian News Corporation spot and option price data.
منابع مشابه
DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices: Application of a Bivariate Kalman Filter
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a hybrid Markov Chain Monte Carlo sampling algorithm. Candidate draws for the unobserved volatilities are obtained ...
متن کاملBayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices: Application of a Bivariate Kalman Filter
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a hybrid Markov Chain Monte Carlo sampling algorithm. Candidate draws for the unobserved volatilities are obtained ...
متن کاملPricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process
Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...
متن کاملDEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Bayesian Estimation of a Stochastic Volatility Model Using Option and Spot Prices
In this paper we apply Bayesian methods to estimate a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Implicit posterior densities for the parameters of the volatility model, for the latent volatilities and for the market price of volatility risk are produced. The method involves augmenting the data generating process associated wit...
متن کاملApplication of the Kalman-Bucy filter in the stochastic differential equation for the modeling of RL circuit
In this paper, we present an application of the stochastic calculusto the problem of modeling electrical networks. The filtering problem have animportant role in the theory of stochastic differential equations(SDEs). In thisarticle, we present an application of the continuous Kalman-Bucy filter for a RLcircuit. The deterministic model of the circuit is replaced by a stochastic model byadding a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006